Fast k-means based on KNN Graph

نویسندگان

  • Cheng-Hao Deng
  • Wan-Lei Zhao
چکیده

In the era of big data, k-means clustering has been widely adopted as a basic processing tool in various contexts. However, its computational cost could be prohibitively high as the data size and the cluster number are large. It is well known that the processing bottleneck of k-means lies in the operation of seeking closest centroid in each iteration. In this paper, a novel solution towards the scalability issue of k-means is presented. In the proposal, k-means is supported by an approximate k-nearest neighbors graph. In the k-means iteration, each data sample is only compared to clusters that its nearest neighbors reside. Since the number of nearest neighbors we consider is much less than k, the processing cost in this step becomes minor and irrelevant to k. The processing bottleneck is therefore overcome. The most interesting thing is that k-nearest neighbor graph is constructed by iteratively calling the fast k-means itself. Comparing with existing fast k-means variants, the proposed algorithm achieves hundreds to thousands times speed-up while maintaining high clustering quality. As it is tested on 10 million 512-dimensional data, it takes only 5.2 hours to produce 1 million clusters. In contrast, to fulfill the same scale of clustering, it would take 3 years for traditional k-means.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFANNA : An Extremely Fast Approximate Nearest Neighbor Search Algorithm Based on kNN Graph

Approximate nearest neighbor (ANN) search is a fundamental problem in many areas of data mining, machine learning and computer vision. The performance of traditional hierarchical structure (tree) based methods decreases as the dimensionality of data grows, while hashing based methods usually lack efficiency in practice. Recently, the graph based methods have drawn considerable attention. The ma...

متن کامل

Fast kNN Graph Construction with Locality Sensitive Hashing

The k nearest neighbors (kNN) graph, perhaps the most popular graph in machine learning, plays an essential role for graphbased learning methods. Despite its many elegant properties, the brute force kNN graph construction method has computational complexity of O(n), which is prohibitive for large scale data sets. In this paper, based on the divide-and-conquer strategy, we propose an efficient a...

متن کامل

Scalable Nearest Neighbor Search based on kNN Graph

Nearest neighbor search is known as a challenging issue that has been studied for several decades. Recently, this issue becomes more and more imminent in viewing that the big data problem arises from various fields. In this paper, a scalable solution based on hill-climbing strategy with the support of k-nearest neighbor graph (kNN) is presented. Two major issues have been considered in the pape...

متن کامل

Sequence Graph Transform (SGT)

A ubiquitous presence of sequence data across fields, like, web, healthcare, bioinformatics, text mining, etc., has made sequence mining a vital research area. However, sequence mining is particularly challenging because of absence of an accurate and fast approach to find (dis)similarity between sequences. As a measure of (dis)similarity, mainstream data mining methods like k-means, kNN, regres...

متن کامل

Distributed computation of the knn graph for large high-dimensional point sets

High-dimensional problems arising from robot motion planning, biology, data mining, and geographic information systems often require the computation of k nearest neighbor (knn) graphs. The knn graph of a data set is obtained by connecting each point to its k closest points. As the research in the above-mentioned fields progressively addresses problems of unprecedented complexity, the demand for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.01813  شماره 

صفحات  -

تاریخ انتشار 2017